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Summary. The terahertz radiation emitted from Fe
+
 ion-implanted InGaAs sur-

face emitters and InP photoconductive switches was measured. We experimentally 

observe an increase in the spectral width of terahertz radiation at greater ion dam-

age, which we attribute to the ultrafast capture of photoexcited carriers. Results 

from a three-dimensional carrier dynamics simulation support this explanation. 

1. Introduction 

Single-cycle pulses of electromagnetic radiation, with spectra covering the 

far-infrared or terahertz (THz) range of 0.1-10 THz (3 mm-30µm), can be 

generated by the ultrafast separation of photoexcited carriers under an 

electric field.
1
 The technique of terahertz time-domain spectroscopy relies 

upon the coherent generation and detection of such single-cycle pulses, 

and is proving useful in diverse areas of condensed matter physics.
2,3,4

 

In order to increase the application of these emitters it is desirable to in-

crease their spectral range. One method of decreasing the pulse duration 

(and thus broadening the spectrum) is to reduce the electric field decay 

time after excitation by using a defect-laden semiconductor. Such materi-

als can be made either by low-temperature growth or via ion-implantation, 

and have sub-picosecond carrier trapping lifetimes and large carrier-defect 

momentum scattering rates.
1,5,6
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2. Sample details and experimental setup 

A tandem accelerator was used to irradiate InGaAs, GaAs and InP samples 

with high energy ions. By choosing the incident ion species, energy and 

dose defects can be created with a certain depth distribution in a target. 

Multi-energy ion implantations were performed in order to create a uni-

form damage profile (Fig. 1) extending across the absorption depth of the 

semiconductor.
1
 

The terahertz time-domain spectroscopy setup used was based on a 10fs 

Ti:Sapphire laser that outputs 400mW at a central wavelength of 790nm, 

and was similar to that described in Ref. 1. Chopping was performed elec-

trically at 20kHz in the photoconductive switch emitter case, and optically 

at 2kHz for surface emitters. All measurements were taken at room tem-

perature, with the terahertz path length under vacuum. 
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Fig. 1. The damage (vacancy) profile of In0.53Ga0.47As:Fe
+
 calculated using the 

SRIM software (available at www.srim.org), extends over the absorption depth of 

1.55µm photons (~1.3µm). Dual-energy (0.7 and 1.8MeV) implants of Fe
+
 ions 

were performed at room temperature, for different ion doses. The highest dose for 

the 1.8MeV implant was 1×10
16

cm
-2

, and the other samples had 5% and 0.1% of 

this dose. The 0.7MeV implants had 28% of the corresponding 1.8MeV dose. For 

the InP:Fe
+
 samples 2MeV and 0.8MeV implants were used, producing similar 

damage. A post-implantation annealing step (500°C for 30 minutes) allowed the 

resistivity to recover. 

3. Measured and simulated terahertz emission 

Figure 2a shows the measured THz electric field emitted from InP:Fe
+
 

photoconductive switches with 400µm gap, and biased by a 20kHz square 

wave at ±120V. The peak electric field decreases from 110Vm
-1

 to 7Vm
-1
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between the unimplanted and highest dose samples due to a reduced elec-

tron mobility. A higher ion dose produces electric field pulses with a 

shorter duration (Fig. 2a), and a broader spectrum (Fig. 2b). In the highest 

ion dose sample the trapping lifetime of photoexcited electrons (as meas-

ured by time-resolved photoluminescence) is 130fs, and is due to deep Fe-

related acceptor defects.
5
 A similar trend was observed in the THz emis-

sion from In0.53Ga0.47As:Fe
+
 surfaces (Fig. 2c and d), where the carrier 

trapping time of the highest dose sample is of the order of 300fs.
6 

The terahertz emission from semiconductors can be accurately modelled 

using a three-dimensional carrier dynamics simulation.
7,8 

By including an 

exponential decay in the number of photoexcited carriers damaged semi-

conductors can also be simulated.
1
 The simulated electric field from InP 

photoconductive switches is plotted for carrier lifetimes of 100ps and 

130fs in Fig. 3. Both the time and frequency domain results are qualita-

tively similar to those in Fig. 2a and 2b. 
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Fig. 2. (a) Normalised electric field versus time t from unimplanted InP (solid 

line) and InP:Fe
+
 (dashed line) with an incident ion dose at 1.8MeV (0.7MeV) of 

5×10
14

cm
-2

 (1.4×10
14

cm
-2

). Measured using a 200µm <110> ZnTe crystal. (b) 

Spectra of a) as a function of frequency ν. (c) Normalised electric field from un-

implanted In0.53Ga0.47As (solid line) and In0.53Ga0.47As:Fe
+
 (dashed line) with an 

incident ion dose at 1.8MeV (0.7MeV) of 5×10
14

cm
-2

 (1.4×10
14

cm
-2

). The peak 

electric fields were 144Vm
-1

 and 20Vm
-1

 respectively. Measured using a 20µm 

<110> on 1mm <100> ZnTe crystal. (d) Spectra of c). 

4. Conclusion 

We observed a bandwidth increase with ion dose in InP:Fe
+
 photoconduc-

tive switches, which offer benefits over GaAs based emitters in the spec-

tral range 0-9THz owing to the higher TO phonon frequency of InP 
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(9.2THz, c.f. 8.1THz in GaAs). A similar bandwidth increase was seen 

from In0.53Ga0.47As:Fe
+
 surfaces, which may be beneficial in terahertz sys-

tems based on 1.55µm wavelength lasers. The simulation results agree 

with the experimentally observed trend. 

The authors would like to thank the EPSRC and the ARC. 
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Fig. 3. (a) Normalised simulated electric field E(t) from InP photoconductive 

switches with a carrier trapping time of 100ps (solid line) and 130fs (dashed line). 

(b) Normalised spectra of a) as a function of frequency ν. (c) Normalised spectra 

from b) after including effect of 200µm ZnTe measurement crystal using a har-

monic oscillator transmission function model with a TO (LO) phonon frequency 

of 5.3THz (6.2THz). 
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