University of Oxford home page
Oxford Terahertz Photonics Group
Oxford Physics
 

Quick links:

Group
Research
Teaching
Contact details
Resources
Select a topic: [Nanowires] [Perovskite Photovoltaics] [Terahertz Technology] [Full publication list]

Key pubilcations on Perovskites


table of content figure
Influence of Interface Morphology on Hysteresis in Vapor-Deposited Perovskite Solar Cells
Patel et al. , 3:1600470 (Feb 2017)
[ pdf ][ DOI:10.1002/aelm.201600470 ]
We use interface engineering to produce highly crystalline perovskite hysteresis-free evaporated planar heterojunction solar cells. TEM reveals that poor interfaces leads to amorphous regions of MAPbI3, hysteresis and poor stabilised power conversion efficiencies.

table of content figure
Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies
Johnston et al. Accounts Chem. Res., 49:146--154 (Jan 2016)
[ pdf ][ DOI:10.1021/acs.accounts.5b00411 ]
A review of the photo physics of Perovskite based semiconductors

table of content figure
Formation Dynamics of CH$_3$NH$_3$PbI$_3$ Perovskite Following Two-Step Layer Deposition
Patel et al. J. Phys. Chem. Lett., 7:96-102 (Jan 2016)
[ pdf ][ DOI:10.1021/acs.jpclett.5b02495 ]
We follow the formation of MAPbI3 from PbI2 and MAI precursors using XRD, VIS, and PL spectroscopies and show the importance of water in achieving full crystallisation

table of content figure
A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
McMeekin et al. Science, 351:151-155 (Jan 2016)
[ pdf ][ DOI:10.1126/science.aad5845 ]

table of content figure
Charge-Carrier Dynamics and Mobilities in Formamidinium Lead Mixed-Halide Perovskites
Rehman et al. Adv. Mater., 27:7938--7944 (Dec 2015)
[ pdf ][ DOI:10.1002/adma.201502969 ]

table of content figure
Colour-selective photodiodes
Johnston Nat. Photonics, 9:633-636 (Oct 2015)
[ pdf ][ DOI:10.1038/nphoton.2015.180 ]

table of content figure
Temperature-dependent charge-carrier dynamics in {CH$_3$NH$_3$PbI$_3$} perovskite thin films
Milot et al. Adv. Funct. Mater., 25:6218-6227 (Oct 2015)
[ pdf ][ DOI:10.1002/adfm.201502340 ]
The photoconductivity in CH3NH3PbI3 thin films is investigated from 8 K to 370 K across three structural phases, and analysis of the charge-carrier recombination dynamics reveals a variety of starkly differing recombination mechanisms.

table of content figure
Perez-Osorio et al. J. Phys. Chem. C, 119:25703--25718 (Oct 2015)
[ pdf ][ DOI:10.1021/acs.jpcc.5b07432 ]

table of content figure
Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells
Docampo et al. Adv. Energy Mater., 4:1400355 (Oct 2014)
[ pdf ][ DOI:10.1002/aenm.201400355 ]
We present planar, fully solution-processed heterojunction mixed halide solar cells based on the solution deposition-conversion technique.

table of content figure
Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films
Wehrenfennig et al. APL Mater., 2:081513 (Aug 2014)
[ pdf ][ DOI:10.1063/1.4891595 ]
we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited organic-inorganic Perovskite semiconductors exploring the nature of recombination channels in the room- and the low-temperature phase of the material.

table of content figure
Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite {CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$}
Wehrenfennig et al. Energy Environ. Sci., 7:2269--2275 (Jun 2014)
[ pdf ][ DOI:10.1039/C4EE01358A ]
We determine high charge-carrier mobilities over 33 cm^2/V/s and bi-molecular recombination rates about five orders of magnitude below the prediction of Langevin's model in vapour-deposited Perovskite solar cells.

table of content figure
Wehrenfennig et al. J. Phys. Chem. Lett., 5:1300-1306 (Apr 2014)
[ pdf ][ DOI:10.1021/jz500434p ]
We show that the PL spectrum of the Perovskite methyl ammonium lead trihalide is homogenously broadened with a line width of 103 meV as a consequence of phonon coupling effects. Thus the materials has the potential to be used in a laser with pulses as short as 10fs.

table of content figure
High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites
Wehrenfennig et al. Adv. Mater., 26:1584-1589 (Mar 2014)
[ pdf ][ DOI:10.1002/adma.201305172 ]
The reason for the high performance of Perovskite solar cells is presented. Organolead trihalide perovskites are shown to exhibit the best of both worlds: charge carrier mobilities around 10 cm2/V/s and low bi-molecular charge recombination constants.

table of content figure
Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
Eperon et al. Energy Environ. Sci., 7:982-988 (Mar 2014)
[ pdf ][ DOI:10.1039/C3EE43822H ]

table of content figure
Efficient planar heterojunction perovskite solar cells by vapour deposition
Liu et al. Nature, 501:395--398 (Sep 2013)
[ pdf ][ DOI:10.1038/nature12509 ]
We demonstrate that a simple planar heterojunction solar cell incorporating a 330nm film of vapour-deposited lead halide perovskite as the absorbing layer can have solar-to-electrical power conversion efficiencies of over 15 per cent.